

Sensorimotor - activity

The "local" muscle system for prevention and performance development.

Erwin Reiterer

"EHF Youth Coaches Course 2009"

History

Australian research group -Hodges [1990]

S-E-T concept

Vidar Vindal, Gitle Kirkesola,Silvia Kollos

[PT from Norway, Austria and Germany]

Muscle classification

- "global" and
- "local" stabilizers

..... to control segments and joints

segment system

Global muscles [lumbar area]

- back muscles [m. erector spinae]
- abdominal muscles [different parts]

Local stabilizers [lumbar area]

- mm. multifidi
- mm. rotatores longi et brevi

Local stabilizers [lumbar area]

Properties and abilities

- tonic contraction
- optimal compression of joint surfaces
- "feed-forward" ⇒

Feed – forward – mechanism Cresswell 1999, Hodges 1997 and 1999

"Transversus abdominis contracts in all quick movements of the trunk, upper extremities, and lower extremities, before the muscles producing the motion are activated."

Feed – forward - mechanism

Moseley GL, Hodges PW, Gandevia SC:

"Deep and superficial fibers of the lumbar multifidus muscle are differently active during voluntary arm

movements."

Spine 2002;2:E29-E36

Model of stabilizing systems [lumbar area]

For 75%, the m. multifidus is the most important muscle for stabilization of the segment L4 - 5, during movement in the "neutral zone!"

Wilke 1995

The collective of lumbar stabilization

Local stabilizers "first order" [lumbar area]

- diaphragm
- m. transversus abdominis
- mm. multifidi
- pelvic floor

Local stabilizers "second order"

- m. quadratus lumborum [medial portions]
- m. psoas major [posterior portions]
- m. latissimus dorsi
- m. obliquus internus u. externus abdominis

Abb. Prometheus, Schünke u.a., 2005

Global muscles

- back muscles [m. erector spinae]
- abdominal muscles [m. rectus abdominis]

This stabilizing system depends on the performance of the sensorimotoric system!

Meissner's corpuscles

Merkel cell

Pacini's corpuscles

Ruffini's corpuscles

Sensors

1] muscles

2] tendons

3] joints

4] sensors for movement and acceleration

5] sensors for pain and injuries

6] sensors of the skin

Sensorimotoric training

Labile und unstable training devices

Unstable training devices

- high sensorimotoric activity based on
- fast, aggressive und unstable stimuli

Unstable training devices

Sensorimotoric training

Injury prevention and performance

development:

- Hypertrophy and
 synchronous activity of the local stabilizers
- coordinated interaction

Chronic injuries or pain in the locomotor system means

- reduced information from the sensorimotoric system and
- reduced local stabilization
- reduced strength
- shear forces

Functional instability

[motor control deficit]

passive control system

active control system

nerval control system

Emergency programm/ paradoxic innervation

reduced sensorimotoric information

..... from the

- muscle sensors
- tendinous sensors
- liagemental sensors
- capsule and
- skin sensors

Paradoxical innervation

Relieving posture: Muscles don't get enough information and correct incoming information to be abel working or reacting in an normal way!

Emergency programm/ paradoxic innervation

The "global" muscle system

- mainly takes the stabalizing control
- tries to limit painful movement
- hypertension
- coordinated interaction is disordered
- structural muscle shortening

Summary

Without sensorimotoric activity no motoric!

Pain reduces the flow of information from the sensors

"Feed – forward" mechanism does not work at peak level!

......... paradoxical innervation/relieving posture

Methodological approach

- Chiropractic manipulation?
- Back- and abdominal muscle training?

Methodological approach

"Reactivation of neuromuscular response!"

Methodological approach

The REHAPE® concept

- reduce pain
- reduce tension
- Increase metabolism in the global muscle system
- sensorimotoric training

REHAPE® Sling Trainer

- I. First, activate the "local" stabilizers.
- II. Second, the "global" muscle system.

Remember: methodological approach

- high sensorimotoric activity based on
- fast, aggressive und unstable stimuli with and on unstable training devices and ...
- pain free
- open and closed kinetic chains

Open and closed kinetic chains

Closed kinetic chain:

The distal end of the body segment is fixed, the proximal segment of the body moves.

For example: push up, squats

Open kinetic chain:

The proximal part of the body is fixed and the distal end oft the body segment moves.

For example: bench press, leg extension

Sensorimotoric training after injuries [pain]:

- "Reactivation of neuromuscular response!"
- Hypertrophy and synchronous activity of the local stabilizers
- coordinated interaction

SLINGTRAINING

Speaking about the shoulder

Erwin Reiterer

- art. glenohumerale
- art. subacromiale
- art. acromioclaviculare
- art. sternoclaviculare
- art. scapulothoracale

Scapula – thoracal – rhythm

Scapula thoracal – rhythm

Anatomic basis

Scapula thoracal – rhythm

- m. trapezius
 - pars descendens
 - pars transversa
 - pars ascendens
- mm. rhomboidei
- m. levator scapulae
- m. serratus anterior

Coordinated interaction in the moment of

scapula – thoracal moves

- concentric and
- excentric activity

Local stabilizers: rotator cuff

Scapula/arm moves and the stabilization depends on the performance of the sensorimotoric system!

Meissner's corpuscles

Merkel cell

Pacini's corpuscles

Ruffini's corpuscles

Sensors

1] muscles

2] tendons

3] joints

4] sensors for movement and acceleration

5] sensors for pain and injuries

6] sensors of the skin

Methodological approach for stabilzing

the shoulder

- I. "Feed-forward"
- II. "centering"
- III. "control distance"

I goal: "Feed-forward"

The "feed-forward-activity" depends on the performance of the sensorimotoric system!

Training with and on unstable devices!

Il goal: "centering" [rotator cuff]

III goal: "distance holder"

Impingement - injurie

Chronic injuries or pain in the locomotor system means

"Feed – forward" mechanism does not work at peak level!

Functional instability

[motor control deficit]

passive control system

active control system

nerval control system

Emergency programm/ paradoxic Innervation

reduced sensorimotoric information

..... from the

- muscle sensors
- tendinous sensors
- liagmental sensors
- capsule and
- skin sensors

Paradoxical innervation

Relieving posture: Muscles don't get enough information and correct incoming information to be abel working or reacting in an normal way!

Scapula thoracal

[relieving posture] > Impingement - injury

Chronic injuries or pain in the locomotor system means

- scapula thoracal muscles don't work together
- structural muscle shortening

Chronic injuries or pain in the locomotor system means

- "Feed forward" mechanism does not work at peak level!
- scapula thoracal muscles dont't work together
- structural muscle shortening
- decentration caput humerus

Gleno humeral

- Ventral position of the caput humerus
- Shear forces

Methodological approach

The REHAPE® concept

- reduce pain
- reduce tension
- increase metabolism in the global muscle system
- sensorimotoric training

REHAPE® Sling Trainer

- I. First, activate the "local" stabilizers.
- II. Second, the "global" muscle system.

Remember: methodological approach

- fast, aggressive und unstable stimuli with and on unstable training devices and ...
- pain free
- closed kinetic chains
- muscles of the thoracic spine

scapula - thoracal - muscles

gleno - humeral - muscles