

THROWING SPORT IMPROVES SHOULDER PROPRIOCEPTION

Kaczmarek P., Lubiatowski P., Cisowski P., Bręborowicz E., Ogrodowicz P., Dudziński W., Romanowski L.

FIFA MEDICAL CENTRE OF EXCELLENCE AKREDYTOWANY OŚRODEK MEDYCZNY FIFA W POLSCE

Introduction

Proprioception – ability to feel the alignment and movement of the body in space and relative position of neighbouring parts of the body

Proprioceptors / Mechanoreceptors:

- Pacini Cells
- Ruffini Nerve Endings
- Free Nerve Endings
- Golgi Organs
- Neuromuscular Spindle

Location:

• Tendons, Ligaments, Muscles, Joint Capsule, Skin, Fascia

Introduction

Overhead pattern is partially dependent on the perception of joint position and joint motion of the shoulder

Ability to perform the movement is controlled by proprioceptive receptors

Information transmitted from the receptors influences reflex activity to provide shoulder dynamic stability

V

Proper proprioceptive and neuromuscular control appears to be crucial for overhead athletes

The evaluation of shoulder joint position sense (JPS) of both shoulders of male handball players and both shoulders of non-athletic healthy male individuals

Statistical analyzis – paired t-test with a significance set at 0.05

The project was funded by the National Science Center based on decision number DEC-2011/01/B/NZ7/03596

Method

High accuracy electronic goniometer (Propriometer, Progress Poland)

- The devise operates under both direct and PC control
- The supporting software allows recording and archiving the patients' data, together with the results of repeated measurements

Propriometer: transducer to place on arm (A), PC panel (B), software controlling the Propriometer (C)

ndającego i badanego (571 lythojie vez			1	h Badający
ny: witho f				F2 Badany
i chore: Prany v	Bark b	adany:		Pa Badanie
niedzenie C R ięcie C Z acia wewnetrzna C P	lotacja zeu gięcie hor rzeprost h	retrzna yzontalne ervzontalne Czas nom. (s): 0	- 	
riedzenie C B gcie C Z scja wewnętrzna C P Data badania	lotacja zew gięcie hor 'rzeprost h Kat	Parametry badania yzontalne oryzontaln; Czas pom. (s): 0 (Czas pomiaru (s) Bark badany		F4 Nowe
niedzenie C B ęcie C Z ncja wewnętrzna C P Data badania 2010-03-11 14:43:23 2010-03-11 14:43:41	lotacja zew (gięcie hor; 'rzeprost h Kąt Ø	Parametry badania netrzna yzontalne oryzontalne Czas pom. (s): 0 Czas pomiaru (s) Bark badany Ø Prewy Ø Prewy		Fq Nowe F5 Ustaw
wiedzenie ⊂ B ięcie ⊂ Z Iacja wewnętrzna ⊂ P Data badania 2010-03-11 14:43:23 2010-03-11 14:43:41 2010-03-11 14:44:10	lotacja zew Igięcie hor Yrzeprost h Kąt Ø Ø Ø	Parametry balania netrzna yzontalne nryzontalne Czas pomiaru (s) Bark badany Ø Prewy Ø Prewy Ø Prewy Ø Prewy		F4 Nowe F5 Ustaw F6 Wycofaj
niedzenie C B ięcie C Z tacja wewnętrzna C P Data badania 2010-03-11 14:43:23 2010-03-11 14:43:41 2010-03-11 14:44:10	lotacja zew (gięcie hor Przeprost h Kąt Ø Ø Ø	Parametry balania netrzna yzontalne nryzontalne Czas pom. (s): 0 Czas pomiaru (s) Bark balany 0 Prewy 0 Prewy 0 Prewy 0 Prewy		Fq Nowe F5 Ustaw F6 Wycofaj F7 Wydruk

Method

Technique of JPS evaluation: set-up (A), evaluation of flexion (B), evaluation of rotation (C)

EARJP – Error of Active Reproduction of Joint Position

Method

How dose it work ?

FIFA MEDICAL CENTRE OF EXCELLENCE AKREDYTOWANY OŚRODEK MEDYCZNY FIFA W POLSCE

Material

• Height: 189,0 (±6,2) • Weight: 92,3 (±11,2) • Throwing arm: R − 72; L − 18

• Height: 180,3 (±5,1) • Weight: 77,4 (±11,2) • Dominant arm: R – 31; L – 1

Results – Abduction

 $(2.8^{\circ} \pm 0.2^{\circ} \text{ vs. } 2.9^{\circ} \pm 0.3^{\circ} \text{ vs. } 4.4^{\circ} \pm 0.4^{\circ}, \text{ respectively})$

Non-throwing shoulder – significantly better joint acuity in abduction at 120° comparing to 60° and 90° $(3.7^{\circ} \pm 0.3^{\circ} \text{ vs. } 4.7^{\circ} \pm 0.3^{\circ} \text{ vs. } 3.9^{\circ} \pm 0.2^{\circ}, \text{ respectively})$

Compared with non-throwing shoulders, throwing shoulders proved significantly better joint acuity in abduction at 90° and 120° $(2.8^{\circ} \pm 0.2^{\circ} vs. 3.9^{\circ} \pm 0.2^{\circ} and 2.9^{\circ} \pm 0.3^{\circ} vs. 3.7^{\circ} \pm 0.3^{\circ}, respectively)$

group

Throwing shoulder – significantly better joint acuity in abduction at 90° and 120° comparing to 60°

No significant differences were noted in the control

 $(3.2^{\circ}\pm0.3^{\circ} \text{ vs. } 3.2^{\circ}\pm0.2^{\circ} \text{ vs. } 4.7^{\circ}\pm0.3^{\circ}, \text{ respectively})$

flexion at 90° and 120°

shoulder

 $(3.9^{\circ}\pm0.6^{\circ} \text{ vs. } 2.5^{\circ}\pm0.3^{\circ})$

- Throwing shoulder significantly better joint acuity in flexion at 90° and 120° comparing to 60°
- $(2.6^{\circ} \pm 0.2^{\circ} \text{ vs. } 2.7^{\circ} \pm 0.2^{\circ} \text{ vs. } 4.7^{\circ} \pm 0.3^{\circ}, \text{ respectively})$
- Non-throwing shoulder significantly better joint acuity in flexion at 90° and 120° comparing to 60°
- Throwing shoulders proved significantly better in EARJP, comparing to the non-throwing ones, in
- $(2.6^{\circ} \pm 0.2^{\circ} \text{ vs. } 3.2^{\circ} \pm 0.3^{\circ} \text{ and } 2.7^{\circ} \pm 0.2^{\circ} \text{ vs. } 3.3^{\circ} \pm 0.2^{\circ}, \text{ respectively})$
- Control group significantly higher results at 60° comparing to 90° of flexion for the non-dominant

Results – Internal rotation

 $(2.3^{\circ}\pm0.2^{\circ}$ vs. $3.5^{\circ}\pm0.3^{\circ})$

Side-to-side results: Significantly better joint acuity in the dominant shoulder at 30° of internal rotation for the control group $(2.5^{\circ}\pm0.2^{\circ} vs. 3.5^{\circ}\pm0.3^{\circ})$

Significantly better joint acuity in throwing shoulder at 60° of internal rotation for handball players $(2.1^{\circ}\pm0.1^{\circ}$ vs. $3.1^{\circ}\pm0.2^{\circ})$

Significantly better joint acuity in internal rotation at 60° comparing to 30° in the control group

Results – External rotation

external rotation movement

Side-to-side results: Throwing shoulders compared to non-throwing ones proved significantly better in EARJP external rotation at 30° and 60°

No statistical differences within the control group or the handball players group for any of the degrees of

 $(2.6^{\circ} \pm 0.2^{\circ} \text{ vs. } 3.2^{\circ} \pm 0.2^{\circ} \text{ and } 2.3^{\circ} \pm 0.2^{\circ} \text{ vs. } 3.0^{\circ} \pm 0.2^{\circ} \text{ respectively})$

Joint positioning (throwing vs dominant) proved significantly better among the athletes comparing to the control group at higher ranges of:

- Abduction (2.9°±0.3° vs. 4.1°±0.4°)
- Flexion (2.7°±0.2° vs. 3.2°±0.3°)
- \odot Internal rotation (2.1°±0.1° vs. 2.6°±0.3°)
- External rotation (2.3°±0.2° vs. 3.1°±0.3°)

There were no significant differences between the non-throwing shoulder in the athletes and the non-dominant shoulder in the control group in any movement and angle

Throwing sport (as handball) affects neuromuscular shoulder control

Throwing athletes have a superior joint position sense in the throwing shoulder comparing to the opposite one

Throwing athletes have a superior joint position sense in the throwing shoulder comparing to the dominant shoulder of the non-athlete population

> Joint acuity is increased in a higher level of shoulder movement

FIFA MEDICAL CENTRE OF EXCELLENCE TOWANY OŚRODEK MEDYCZNY FIFA W POLSCE

Thank You

Piotr Kaczmarek, PT

piotr.kaczmarek@rehasport.pl

FIFA MEDICAL CENTRE OF EXCELLENCE AKREDYTOWANY OŚRODEK MEDYCZNY FIFA W POLSCE

